Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola.

نویسندگان

  • Stephen B Goodwin
  • Theo A J van der Lee
  • Jessica R Cavaletto
  • Bas Te Lintel Hekkert
  • Charles F Crane
  • Gert H J Kema
چکیده

A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99 of them, flanking primers were developed successfully and tested for amplification and polymorphism by PCR on five field isolates of diverse origin, including the parents of the standard M. graminicola mapping population. Seventy-seven of the 99 primer pairs generated an easily scored banding pattern and 51 were polymorphic, with up to four alleles per locus, among the isolates tested. Among these 51 loci, 23 were polymorphic between the parents of the mapping population. Twenty-one of these as well as two previously published microsatellite loci were positioned on the existing genetic linkage map of M. graminicola on 13 of the 24 linkage groups. Most (66%) of the primer pairs also amplified bands in the closely related barley pathogen Septoria passerinii, but only six were polymorphic among four isolates tested. A subset of the primer pairs also revealed polymorphisms when tested with DNA from the related banana black leaf streak (Black Sigatoka) pathogen, M. fijiensis. The EST database provided an excellent source of new, highly polymorphic microsatellite markers that can be multiplexed for high-throughput genetic analyses of M. graminicola and related species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic kinkage map of Mycosphaerella graminicola, the septoria tritici leaf blotch pathogen of wheat.

An F(1) mapping population of the septoria tritici blotch pathogen of wheat, Mycosphaerella graminicola, was generated by crossing the two Dutch field isolates IPO323 and IPO94269. AFLP and RAPD marker data sets were combined to produce a high-density genetic linkage map. The final map contained 223 AFLP and 57 RAPD markers, plus the biological traits mating type and avirulence, in 23 linkage g...

متن کامل

A Gene-for-Gene Relationship Between Wheat and Mycosphaerella graminicola, the Septoria Tritici Blotch Pathogen.

ABSTRACT Specific resistances to isolates of the ascomycete fungus Mycosphaerella graminicola, which causes Septoria tritici blotch of wheat, have been detected in many cultivars. Cvs. Flame and Hereward, which have specific resistance to the isolate IPO323, were crossed with the susceptible cv. Longbow. The results of tests on F1 and F2 progeny indicated that a single semidominant gene control...

متن کامل

Identification and Molecular Mapping of a Gene in Wheat Conferring Resistance to Mycosphaerella graminicola.

ABSTRACT Septoria tritici leaf blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), is an economically important disease of wheat. Breeding for resistance to STB is the most effective means to control this disease and can be facilitated through the use of molecular markers. However, molecular markers linked to most genes for resistance to STB are not ye...

متن کامل

DNA Fingerprint Probe from Mycosphaerella graminicola Identifies an Active Transposable Element.

ABSTRACT DNA fingerprinting has been used extensively to characterize populations of Mycosphaerella graminicola, the Septoria tritici blotch pathogen of wheat. The highly polymorphic DNA fingerprints of Mycosphaerella graminicola were assumed to reflect the action of transposable elements. However, there was no direct evidence to support that conclusion. To test the transposable element hypothe...

متن کامل

Sources of resistance and susceptibility to Septoria tritici blotch of wheat

An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple-sequence repeat (SS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fungal genetics and biology : FG & B

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2007